Surface studies of crystals

Bogdan J. Kowalski

IF PAN

Outline

- Introduction
- Methods:

Electron microscopy Scanning probe microscopies Electron spectroscopies Diffraction methods Ion techniques

Surface-sensitive optical techniques

• Summary, literature

What does it mean

surface?

Surface

Surface description: Bravais lattices

5 2-dimensional Bravais lattices(14 3-dimensional Bravais lattices)

K.Oura et al. Surface Science. An Introduction

Surface description: Miller indices

{6, 3, 2} - a set of parallel planes

For a hexagonal structure (h, k, -h-k, l)

Surface Science. An Introduction

Atomic structure of surfaces - examples

Face-centered cubic crystal

Surface Science. An Introduction

Body-centered cubic crystal

Surface structure description - notations Wood's notation

 $|a_s| = m|a|$ $|b_s| = n|b|$

$$S(hkl) - i(m \times n)R\phi^{\circ} - N Ad$$

$$(p \text{ or } c)$$

$$Ni(100) - (2\sqrt{2} \times \sqrt{2})R45^{\circ} - O$$
Matrix notation
$$G_{12}b \qquad G = \begin{pmatrix} G_{11} & G_{12} \end{pmatrix}$$

$$\begin{array}{l} a_s = G_{11}a + G_{12}b \\ b_s = G_{21}a + G_{22}b \end{array} \quad G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$$

K.Oura et al. Surface Science. An Introduction

Example: Si (111) surface

Si(111)- (1x1) ideal cut

Si(111)- (2x1) crystal cleaved along (111)

Si(111)- (7x7)

obtained from 2x1 by annealing at 450°C

dimer-adatom-stacking fault (DAS) model

Electronic structure of the surface

unrelaxed GaAs(110)

E.J. Mele..., Phys. Rev. B. 17, 1816 (1978)

Electronic structure of the surface (cont.) Brillouin zones

Bulk Brillouin zone

Electronic structure of the surface (cont.)

A. Zunger, Phys. Rev. B 22, 959 (1980)

What do we want to know about surfaces?

- Morphology
- Chemical composition (cleanness, presence of impurities, their surface and depth distribution...)
- Atomic structure
- Electronic structure
- Electronic/electric properties
- Optical properties

Warning! The surface may easily be modified!

Pressure (hPa)	Mean free path	Arrival rate (cm ⁻² s ⁻¹)	Monolayer arrival time
1000	700 Á	3x10 ²³	3 ns
10-3	5 cm	4x10 ¹⁷	2 ms
10-9	50 km	4x10 ¹¹	1 hour ⁶¹ KOura et 8

Surface Science. An Introduction

 $1 \text{ ML} - 10^{15} \text{ cm}^{-2}$, sticking coefficient = 1

Pressure of the order of 10⁻¹⁰ hPa is necessary for studying pristine surfaces!

How to extract the signal coming from the surface?

What can be a surface sensitive "probe"?

• Electrons

Short escape depth

- **Available techniques:**
- •Microscopy

W. Mönch "Semiconductor surfaces and interfaces" 1993

•Diffraction (LEED, RHEED)

•Spectroscopy (photoemission, Auger electron spectroscopy)

What can be a surface sensitive ,,probe" (cont)?

• Ions

• Scattering (n.p. RBS)

Increased surface sensitivity for selected crystallographic directions (channelling)

- Surface sputtering (SIMS)
- Photons
 - Surface differential spectroscopy
 - X-ray diffraction

Increased surface sensitivity for glancing incidence

Microscopies

Scanning Electron Microscopy (SEM)

- opaque samples
- $\mathbf{R} \approx 1 \text{ nm}$
- $U_{acc} \le 30 \text{ kV}$

Electron detection in SEM

Scanning Tunnelling Microscopy (STM)

Scanning Tunnelling Microscopy (STM) (cont.)

Si(111)- (7x7)

GaN(0001)- (1x1)

Scanning tunnelling microscopy (STM) (cont.)

Filled and empty electronic states in STM images of Si(111)-7x7 upon deposition of 0.05 ML of Ta. (P. Shukrynau *et al.* Surface Science **603**, 469 (2009))

Scanning tunnelling spectroscopy (STS)

Atomic Force Microscopy (AFM)

Forces:

- 1. Repulsive force, due to the Pauli principle (z < 0.1 nm).
- 2. Force due to the binding between atoms (z = 0.1-0.4 nm).
- 3. Attractive van-der-Waals force (long range, dominating for $z \gg 0.5$ nm).
- 4. Electrostatic forces (long range, dominating for $z \gg 0.5$ nm).
- 5. Attractive capillary forces (long range, larger than van-der-Waals force) additionally occur in non-UHV environments.

sjhsrc.wikispaces.com

Atomic Force Microscopy (AFM) (cont.)

Electron spectroscopies

Auger electron spectrometer with a cylindrical mirror analyser Primary electron energy: up to 3kV Resolving power: Ε/ΔΕ > 145

Modes of AES spectra acquisition:

AES

Sample : Pd

Ep = 2.5keV

differential

Auger electron spectroscopy:

- 1. Analysis of the sample surface composition detection of all elements except hydrogen and helium
- 2. Simple interpretation of spectra a large database of reference spectra
- 3. Quantitative analysis possible especially by comparison with standards
- 4. Possibility to analyze the 2D or 3D distribution
- 5. Sometimes spectra are sensitive to chemical bonds

Photoemission spectroscopy

Spektroskopia fotoemisyjna

Photoemission needs Ultra High Vacuum (UHV)!

atom.ik-pan.krakow.pl

Surface preparation

□ In situ epitaxy

Cleavage

www.exphys.uni-linz.ac.a

□ In situ cleaning:

- ion etching
- annealing

X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA)

XPS: hv > 1000 eV; $hv = 1000 \text{ eV} \rightarrow \mathbf{k} = 0.506 \text{ Å}^{-1}$

X-ray source: Al K_{α1,2} - 1486.6 eV

B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000)

B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000)

Angle-resolved photoelectron spectroscopy

angular

Н

 \mathbf{K}

emission

Example: SION \mathbf{M} Brillouin zone

Wurtzite structure

Angle-resolved photoelectron spectroscopy of surface and bulk states

Beamline I3 MAX-lab, Lund University, Sweden

Beamline UARPES NCSR SOLARIS, Jagiellonian University, Kraków, Poland

- Elliptically polarizing quasiperiodic undulator of APPLE
 II type
- Monochromator combining normal (NIM) and grazing incidence (PGM) optics (the photon energy range of 8–100 eV)
- SCIENTA OMICRON DA30L photoelectron spectrometer
- The energy and angular resolution: 1.8 meV and 0.1°
- Temperature range 10 500 K

Topological crystalline insulator Pb_{0.67}Sn_{0.33}Se, T=87 K, hv=18.5 eV

P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Łusakowska,
T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg, T. Story, *Nature Materials* 11, 1023 (2012)

Weyl semimetal NbP

ARPES data for NbP(001) P-face taken at UARPES (SOLARIS)

Diffraction methods

Surface X-ray diffraction

X-ray total-external-reflection–Bragg diffraction: A structural study of the GaAs-Al interface

W. C. Marra, P. Eisenberger, and A. Y. Cho Bell Laboratories, Murray Hill, New Jersey 07974

(Received 19 March 1979; accepted for publication 8 June 1979)

A new technique utilizing conventional x-ray diffraction in conjunction with total external reflection has provided a powerful tool for studying ordered interfaces and surface phenomena. It has been used in this work to study the details of the interface region of a molecular beam epitaxially grown Al single crystal on a molecular beam epitaxially grown GaAs single-crystal substrate. A simple model including variations of the lattice parameter and disorder in the interface region is in agreement with these experimental results.

J. Appl. Phys. 50(11), November 1979

Surface X-ray diffraction (cont.)

Dehydrogenation of Liquid Organic Hydrogen Carriers on Supported Pd Model Catalysts: Carbon Incorporation Under Operation Conditions, Ralf Schuster et al., Catalysis Letters 148, 2901 (2018)

Construction of the Ewald sphere

Low-Energy Electron Diffraction (LEED)

K.Oura et al. Surface Science. An Introduction

Low-Energy Electron Diffraction (LEED) (cont.)

In deposition on Si(111) $\sqrt{3x} \sqrt{3-R30^0}$

Reflection High-Energy Electron Diffraction (RHEED)

Surface Science. An Introduction

Ion scattering methods

Rutherford Backscattering Spectrometry (RBS)

K.Oura et al. Surface Science. An Introduction

Secondary Ion Mass Spectrometry (SIMS)

e.g. Cs⁺ lub Ar⁺ 1-30 keV

www.ainse.edu.au

Optical methods

Reflection Anisotropy Spectroscopy (RAS)

Physics, University of Linz, Austria

Summary

We can test various surface properties using: **Electron microscopy (SEM) Scanning probe microscopies (STM, AFM) Electron spectroscopies (XPS, ARPES, AES) Diffraction methods (X-ray, LEED, RHEED) Ion techniques (RBS, SIMS) Surface-sensitive optical techniques (RAS)** and many others...

Literature:

T. Fauster, L. Hammer, K. Heinz, A. Schneider Surface Physics. Fundamentals and methods De Gruyter 2020

K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama Surface Science. An Introduction Springer 2003

D.P. Woodruff, T.A. Delchar *Modern Techniques of Surface Science* **Cambridge University Press 1988**

H. Lüth Surfaces and Interfaces of Solid Materials Springer 1995