X-ray diffraction and reflectometry in studies of crystals

Michał Leszczynski Instytut Wysokich Ciśnień i TopGaN

Lecture 22 Apr 2022

Bragg's law

Analytical tasks

Layer thickness

Chemical composition

Lattice relaxation

Defects and crystal size

Lateral structures

Laue camera (white beam)

Photon coherence

We add amplitudes $(\sin+\sin+\sin+...)^2$ We add intensities $(\sin^2+\sin^2+\sin^2+...)$

Lz 1.5 μm. Ly 0.5-5 μm Ly 10-100 nm!!!

History

1912- first observation of XRD: Max von Laue

1912- 1940- diffraction theory: W.L. Bragg, W.H. Bragg, R.W. James

1948- first diffractometer: Philips Anal.

1976- first personal computer: S. Wozniak and S. Jobs

Diffractometer

Primary beam

Goniometer head **Reflected beam**

X-ray tube

Synchrotron radiation

Monochromator

Goniometer head

Analyzers and detectors

Double axis, double crystal, rocking curve configuration Sensitive to mosaicity and lattice parameters variations

Rocking curve as a measure of GaN crystallographic quality

Always compare FWHM and intensities for various reflections (also asymmetrical ones), as well as different area illuminated with X-rays.

	С	0.023
	D	0.015

Small size of crystallites- additional peak broadening!!!

GaN crystal (dislocation density cm-2)	FWHM 00.2 (arc deg)	Intensity 00.2 (Mcps)	
A 2x10exp8	0.087	28	
B 8x10exp6	0.030	29	
С 1х10ехрб	0.038	30	
D 5x10exp4	0.015	32	
GaN crystal	FWHM 00.4	Intensity 00.4	
	(arc deg)	(Mcps)	
A	(arc deg) 0.081	(Mcps) 4	
A B	(arc deg) 0.081 0.029	(Mcps) 4 12	
A B C	(arc deg) 0.081 0.029 0.023	(Mcps) 4 12 15	

Mosaic structure of HP GaN crystals

Topografia kryształu GaN

Information from the rocking curves and topography

- Bu lk crystals(GaAs, Si, InP, i in.):
- i) mosaicity (dislocation density higher than 10^6 cm⁻²),
- ii) bowing,
- iii) off-orientation
- Epi wafers:
- i) thickness (+/- 2-5 A)
- ii) chemical composition of ternary compounds (+/-1%)

We are not able to see point defects in XRD- only their inhomogeneities (scale 0.1- $1 \ \mu m$)

Theory

Kinematical theory No rescattered radiation is taken into account

Dynamical theory Based on Maxwell radiation Commercial programs (for example, Epitaxy) for pefect epi-structures (only vertical changes)

Triple axis Sensitive to lattice parameters variations

10-fold InGaN/GaN

2theta/omega for InGaN layer on GaN/sapphire

AIGaN layers on different substrates

Ammono GaN substrate EPD 10⁴/ cm² 87% of AlGaN peak intensity

HVPE GaN substrate EPD 10⁷/ cm² 60%

GaN on sapphire EPD 10⁸/ cm² 35% Qualitative explanation why peaks from thin layers depend very strongly on crystallographic quality

Perfect crystal

Only small regions fulfill Bragg condition Thin layers have much smaller intensity

Example: Lattice expansion by freeelectrons GaAs

Example: Effect of implantation

Implantation at high temperature

GaN layers on sapphire implanted with Mg at different temperatures Only 800oC necessary

Example: 10-fold GaN/InGaN with indium fluctuations

Broadening of fringes InGaN QWs, QBs grown at different temperatures

730

830

Reciprocal lattice mapping

Reciprocal lattice maps

Streaks in reciprocal lattice mapping

Reciprocal lattice mapping

10.4

Look out for Domagala's peaks (hybrid peaks)

Hybrid reciprocal lattice

Thin layers

Diffraction

Reflectivity

Reflectivity- surface roughness

Reflectivity- density

Reflectivity-layer thickness

60 nm Ni on Si

10 nm Au 60 nm Ni on Si

Surface diffraction (grazing incidence)

Polycrystalline materials

Bragg-Brentano configuration

Powder diffractogram

Diffraction from polycrystalline thin layers File name: NITI2.IDF, date and time: 15/11/2003 18:25:04 Counts

Incidence angle 0.2 deg

Penetration depth about

Incidence angle 0.6 deg

Penetration depth about

Ni

Au

Information from powder diffractometry

- Phase analysis
- Quantitative analysis (with standards, standardless)
- Grain size
- Strains

Guardando attraverso le particolari lenti, l'effetto ottico che ne risulta vi farà intravvedere... visioni insospettate. Guardandovi

le mani ne vedrete lo scheletro, osservando una persona ne scoprirete le fattezze sotto gli abiti. E045 - Occhiali a Raggi X L. 7.900