Crystal Growth: Physics, Technology and Modeling

Stanisław Krukowski & Michał Leszczyński Institute of High Pressure Physics PAS 01-142 Warsaw, Sokołowska 29/37 e-mail: stach@unipress.waw.pl, mike@unipress.waw.pl

> Zbigniew Żytkiewicz Institute of Physics PAS 02-668 Warsaw, Al. Lotników 32/46 E-mail: <u>zytkie@ifpan.edu.pl</u>

Lecture 2. Epitaxy of semiconductor structures

http://www.unipress.waw.pl/~stach/cg-2021-22

19.10.2021 – Epitaxy

1

Epitaxy of semiconductor structures

Michał Leszczyński Instytut Wysokich Ciśnień PAN And TopGaN

Outline

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells

What is to be grown? For example, blue LD.

What we need from epitaxy:

- 1. Proper chemical composition (including doping)
- 2. No defects (dislocations, vacancies, etc)
- 3. Perfect interfaces
- 4. Perfect uniformity across the wafers

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells

Liquid Phase Epitaxy (LPE)

Technology abandoned by industry

- Only small wafers
- Not perfect interfaces
- Not highest purity

Molecular Beam Epitaxy (MBE)

- + High purity, perfect interfaces, no hydrogen in the system
- Costs, no multiwafer machines (one six-inch wafer)

19.10.2021 - Epitaxy

RHEED growth rate and roughness control

RHEED: lattice relaxation control

19.10.2021 - Epitaxy

Metalorganic Chemical Vapour Phase Epitaxy MOVPE

```
A(CH3)3+BH3->AB+3CH4
A= Ga, In, Al, B=N, As, P
```


Gas panel, MOVPE, AlGaInN:Mg, Si

MOVPE reactors

19.10.2021 – Epitaxy

Turbodisc VEECO

Smoke Flow Patterns in Rotating Disk System (EXPERIMENTAL). (Data courtesy of Sandia National Laboratories)

The largest system:31×4", 12×6" and 6×8"

19.10.2021 – Epitaxy

Showerhead (AIXTRON)

Planetary reactors

(AIXTRON)

56x2-inch 19.10.2021 – Epitaxy

5x8-inch

Nakamura's reactor (Nichia)

A little bit similar reactors are offered by Nippon Sanso

Laser reflectometry used in every MOVPE (every oscillation corresponds to 100-400 nm)

18

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells

Step-flow growth mode and substrate offorientation

• The steps flow slower for higher offorientation

Lateral patterning

M. Sarzynski idea 21 19.10.2021 – Epitaxy Patented by TopGaN/Unipress

Morphology of InGaN layers grown on GaN substrates of different misorientation, Tgrowth = 820oC

0.2 degree

0.8 degree

1.8 degree

19.10.2021 – Epitaxy

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells 19.10.2021 – Epitaxy

Lattice relaxation

(c) Mismatch Defect in heteroepitaxy

(d) TEM of bulk heteroepitaxy

Growth on highly mismatched substrates

Schematic of the growth process of GaN layers for (a) samples S1 and (b) S2 with H 2 and N 2 as nucleation layer carrier gases. 19.10.2021 – Epitaxy

25

Epitaxial Lateral Overgrowth

Outline

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells

Nanocolumns

(b)

In LDs, we need to have thick AIGaN cladding layers

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells 19.10.2021 – Epitaxy

33

Efficiency of Ga incorporation into GaN in HM

Efficiency= number of atoms in gas phase/ number of atoms incorporated into the epi layer

At low pressure, the Ga atoms are blown away from the surface.

At high pressure and temperature, the rate of prereactions increase which prevents Ga incorporation

Efficiency of Ga incorporation202dependent on amount of TEGa

Efficiency of Al incorporation into AlGaN

9 sccm of TMAI

Efficiency of In incorporation into InGaN versus TEGa flow

In incorporation into InGaN layers versus GaN substrate off-orientation

Outline

- 1. Epitaxial reactors
- 2. Substrate off-cut
- 3. Problem of lattice mismatch
- 4. Non-lateral growth
- 5. Atom incorporation efficiency
- 6. Examples of MOVPE growth: InGaN Quantum Wells

As grown InGaN QWs

Indium fluctuations

QW thickness fluctuations

Acceptable for LEDs Not for LDs

Examples of MOVPE growth: InGaN Quantum Wells

- 1. Influence of temparature
- 2. Influence of hydrogen as a carrier gas
- 3. Homogenization and decomposition

Influence of hydrogen used in the carrier gas

We use hydrogen for growing the QBs- but with special care

 $2\%\,{}^{\mbox{of}}$ H2 in N2

Influence of hydrogen used in the carrier gas during GaN barrier growth in CCS

Hydrogen used in QB growth etches off InGaN QW more efficiently at high pressure

Hydrogen increases the growth rate of GaN (QB) at low pressure, deacreses at higher pressure.

19.10.2021 – Epitaxy

Influence of hydrogen used in the carrier gas during GaN barrier growth in CCS

Hydrogen used in QB growth etches In off InGaN QW more efficiently at high pressure

Growth temperatures of the laser diode structure

GaN:Mg		
AlGaN:Mg		
GaN:Mg	$T_{C_{r}} = XXXX^{o}C$	
EBL - AlGaN:Mg	-Gr	To obtain good p-type
Cap – GaN		XXXX should be as high
Cap – GaN		as possible
QW - InGaN	$T_{Gr}QW < 740^{\circ}C$	(above 900°C).
QB – GaN	T $OB > 7/10^\circ C$	
InGaN	$\Gamma_{\rm Gr}$ QD > 740 C	At high temperatures, InGaN
	For In content >	QWs change
	15%	
GaN		
AlGaN:Si	$T_{Gr} = 1000^{\circ}C$	
GaN:Si	19.10.2021 – Epi	taxy 44
Substrate		

InGaN MQW decomposition

TEM: nanometer scale, Fluorescentoraicroscopy: micrometers, MicroP45: milimieters

Changes of the MQWs during p-type growth at high temperature: samples on sapphire

At high temperature satellite peaks becomes much more broader and disappear :¹⁹QWs¹degradation occurs

growth temperature of 'p' type (°C)

For samples on sapphire (high dislocation density) we are able to homogenize InGaN QWs by growing ptype at high temperature.

If this temperature is too high, we deal with a catastrophic damage

SIMS data of In-content

as grown

homogenozed

decomposed

19.10.2021 – Epitaxy

Why does the decomposition start from the first QW?

Diffusion of vacancies?

In GaN:Si we have more Ga-vacancies

In GaN:Mg we have more N-vacancies

Diiferent doping below and above the InGaN/GaN MQWs

5QWs - (460 nm) - 17%In

After annealing at 950°C

No decomposition from the top

Diiferent doping below and above the InGaN/GaN MQWs 5QWs - (460 nm) - 17%In

After annealing at 950°C

No decomposition from the top

Thank you for your attention!

Epitaxy equipment market for More than Moore devices: 2019-2025 breakdown by technology

(Source: Epitaxy Growth Equipment for More Than Moore Devices Technology and Market Trends 2020 report, Yole Développement, 2020)

About 500 epitaxial systems installed every year, 2000 in 2025.

19.10.2021 – Epitaxy